close
تبلیغات در اینترنت
عاشقان مهندسی شیمی پیام نور تبریز

آشنایی با تجهیزات کاربردی در مهندسی شیمی

آشنایی با تجهیزات کاربردی در مهندسی شیمی

 

  • مبدل حرارتی
نام انگلیسی: Heat Exchanger
مبدل حرارتی دستگاهی است که برای انتقال حرارت موثر بین دو سیال (گاز یا مایع) به دیگری استفاده میگردد. از رایجترین مبدلهای حرارتی رادیاتور خودرو و رادیاتور شوفاژ است. مبدل های حرارتی در صنایع مختلف از جمله گرم کردن فضا، سرد سازی، تهویه مطبوع، خودرو، نفت و گاز و بسیاری صنایع دیگر مورد استفاده قرار میگیرند. مکانیزم انتقال حرارت بصورت جابجایی و هدایت می باشد. یک مثال معمول از مبدل های حرارتی رادیاتور ماشین می باشد،که در آن آبی که با حرارت موتور ماشین داغ شده است ، حرارت آن از طریق رادیاتور به جریان هوا منتقل می کند. از انواع مبدل ها می توان به مواردی چون مبدل های لوله ای  (Tubular Heat Exchanger) که خود بر اساس شکل به مبدلهای لوله ای U شکل، مبدلهای دو لوله ای ساده و مبدل های دو لوله ای کویل دار تقسیم بندی می شوند)، مبدل های پوسته و لوله (Shell Tube Heat Exchanger)، مبدل های صفحه ای (Plate heat exchanger)، مبدل های پره دار (Fin Heat Exchangers)  اشاره کرد.
مبدل ها وسایلی هستند که در صنعت برای انتقال حرارت بین دو سیال بکار می روند. در ابتدا سعی می شود تا آنجا که ممکن است برای گرم کردن و سرد کردن جریان ها از خود سیال های موجود در فرایند استفاده شود . بعد از حداکثر کردن میزان بازیافت حرارت در شبکه مبدل حرارتی بار های گرمایشی و سرمایشی که از طریق بازیافت حرارت تامین نشده اند باید توسط سرویس های جانبی (Utility) تهیه شوند . مکانیزم انتقال حرارت بصورت جابجایی و هدایت می باشد. نحوه قرار گرفتن سیال ها در کنار یکدیگر می تواند به چندین صورت مختلف باشد:
- جریان همسو (co-current): دو سیال از یک طرف مبدل وارد شده و هر دو از طرف دیگر خارج می شوند. بعضی در مبدل نیز هردو در یک سو حرکت می کنند . نتیجتاً در مبدل نیز هر دو در یک سو حرکت می کنند.
- جریان ناهمسو (counter-current): هرکدام از سیال ها از جهات مخالف وارد و خارج می شوند (یکی از سیا لها از یک جهت و سیال دیگر از جهت دیگر وارد می شود) و دو سیال در مبدل به صورت ناهمسو جریان دارد.
- جریان متقاطع (cross-flow): یکی از سیال ها از یک جهت و سیال دیگر در جهت عمود بر آن جریان دارد. مشخص ترین نمونه آن رادیاتور ماشین می باشد که جریان آب از بالا به پایین در لوله ها و جریان هوا عمود بر آن می باشد.
- جریان چندگذر (multi pass): که در آنها جریان های دو سیال به صورت چندتایی در مبدل چیده شده اند.
تقسیم بندی بر اساس خصوصیات سیال هایی که در مبدل ها جریان دارد
این تقسیم بندی بر اساس سیال فرایندی مبدل شکل گرفته است. البته تفاوت بین ضرایب انتقال حرارت گازها و مایعات در تعیین شکل مبدل نقش موثری دارد.
مایع/ مایع: در این نوع مبدل های حرارتی هر دو سیال مایع هستند و مکانیزم انتقال حرارت برای هر دو ، انتقال حرارت اجباری است. انتقال حرارت در این مبدل ها به علت بالا بودن ضریب انتقال حرارت مایعات بالاست.
گاز/ مایع: در این مبدل ها یک سیال مایع و سیال دیگر گاز است. معمولاً برای خنک نمودن سیال گرم توسط هوا استفاده می شود. جریان مایع با سرعت کافی داخل لوله پمپ می شود که این موجب بالا بودن ضریب انتقال حرارت طرف لوله ها می شود. هوا به صورت متقاطع بر روی لوله ها جریان می یابد. جریان هوا می تواند به صورت جابجایی اجباری یا آزاد باشد.
گاز/گاز: معمولاً کمتر اتفاق می افتد که در مبدل ها هر دو سیال گاز باشند مگر اینکه یکی از گازها در فشار بالا باشد. گاز فشار بالا که دانسیته آن بیشتر است در داخل لوله ها جریان می یابد. البته ضریب انتقال حرارت در این موارد خیلی کوچک است و برای انتقال حرارت مناسب باید تدابیری اندیشید. کندانسورها در این مبدل های حرارتی جریان بخار یک سیال توسط مایع (مثلاً آب) و یا جریان گاز (مثلاً هوا) خنک و کندانس می شود. گاهی اوقات بخار خارج لوله است مثل کندانسورهای نیروگاه های حرارتی و گاهی اوقات بخار داخل لوله است مثل کندانسورهای فرئون.
مبدل پره دار
1[pnu-eng.ir]
نام انگلیسی : Fin Heat Exchangers
هنگامی که اختلاف فاحشی بین ضریب انتقال حرارت داخل و خارج لوله وجود داشته باشد از پره استفاده می شود. به عنوان مثال در مبدل های گاز/مایع در طرف گاز از پره های بلند استفاده می شود و یا در مبدل های گاز/گاز به علت کم بودن ضریب انتقال حرارت در دو طرف به وسیله فین ها سطح انتقال حرارت و در ننتیجه میزان آن را افزایش می دهند. پره ها معمولاً دارای ضخامت ۰٫۰۳۳۵ in هستند. راندمان حرارتی آنها با افزایش مقاومت حرارتی کاهش پیدا می کند. اگرچه لوله های با پره داخلی وجود دارد ولی در مبدلهای لوله ای بیشتر از پره های بلند طولی استفاده می شود که در خارج لوله تعبیه شده اند. پره ها می توانند پیچششی و منقطع نیز باشند تا بدین وسیله سیال داخل حلقه بهتر مخلوط شود. اما در عمل مشاهده می شود که افت فشار را به مقدار زیادی افزایش می دهند و به این ترتیب اثر افزایش انتقال حرارت خنثی می شود.
مبدل لوله ای
2[pnu-eng.ir]
نام انگلیسی: Tubular Heat Exchanger
این گونه از مبدل ها از دو لوله هم محور تشکیل شده اند. یکی از سیال ها در داخل لوله میانی و در امتداد طول آن جریان می یابد و سیال دیگر در داخل حلقه بین دو لوله جریان خواهد یافت. سایر اجزاء ساختمانی این مبدل ها عبارتند از:
- زانوی برگشت
- سر برگشت
- اتصالات T
برای ورودی و خروجی سیال ها هنگامی که اختلاف انبساط حرارتی بین لوله خارجی و داخلی وجود دارد در کاربرد نوع اتصالات می باید دقت کافی شود تا تنش حرارتی مینیمم گردد. مبدل های لوله ای را می توان بر اساس شکل تقسیم بندی نمود:
۱ – مبدل های لوله ای U شکل
۲ – مبدل های دو لوله ای ساده
۳ – مبدل های دو لوله ای کویل دار
موارد کاربرد و مزایای مبدل های لوله ای 
هنگامی که ضریب انتقال حرارت سیال داخل لوله نسبت به خارج آن بزرگتر از ۲:۱ باشد، مثلاً داخل لوله مایعات کم لزج مثل آب با ضریب انتقال حرارت بالا باشد و خارج آن از مایعات لزج استفاده شود معمولاً بجای استفاده از مبدل های پوسته و لوله از مبدل های لوله ای استفاده می شود. البته در این موارد از پره با طول بلند که باعث افزایش سطح می شود، در خارج لوله استفاده می شود. همچنین اگر سرویس های فشار بالا مورد نیاز باشد ، مبدل های لوله ای ترجیحاً استفاده می شود. در سرویس های کوچک نیز از این مبدل ها استفاده می شود. استفاده و کاربرد زیادی که مبدل های لوله ای دارند به خاطر مزایای زیر می باشد:
این سیستم ها دارای انعطاف پذیری زیادی هستند. در طول های مختلف و از انواع لوله های مختلف و از مواد مختلف ساخته می شوند و خیلی سریع از سوار کردن قطعات استاندارد پیش ساخته آماده می گردند . با انتخاب صحیح اتصالات به آسانی می توان قطعات آن را پیاده نمود تا درون و بیرون لوله ها تمیز شوند. محاسبات طراحی آنها به صورت دقیق و خوبی تدوین شده است. توزیع و پخش سیال را می توان در واحدهای مختلف کنترل نمود. این کار با انتخاب پمپ های جداگانه برای هر سری مبدل امکان پذیر است. معایب مبدل های لوله ای از معایب عمده این مبدل ها می توان موارد زیر را نام برد:
۱ – برای بار حرارتی بزرگ، سیستم مبدل های دولوله ای حجم زیادی را اشغال می کنند.
۲ – قیمت آنها برای واحد سطح انتقال حرارت نسبتاً زیاد است.
مبدل پوسته و لوله
3[pnu-eng.ir]
نام انگلیسی: Shell Tube Heat Exchanger
هنگامی که سطح انتقال حرارت لازم برای مبدل های دو لوله ای زیاد شود (بیشتر از ۵۰m2 باشد)، بهتر است از مبدل های پوسته و لوله استفاده شود. مبدل های پوسته و لوله به طور وسیعی در فرایند های انتقال حرارت برای کاربردهای مایع/مایع و همچنین در کندانسورها و مولدهای بخار استفاده می شوند . این مبدل ها برای انتقال حرارت مشخصی سطح کمتری به نسبت مبدل های لوله ای اشغال می کنند.
مزایای این گونه مبدل ها عبارتند از:
۱- در حجم کم ایجاد سطح بزرگی برای انتقال حرارت می کنند.
۲ – طراحی مکانیکی خوبی دارند.
۳ – روش ساخت تثبیت شده خوبی دارند.
۴ – قابلیت استفاده برای دامنه وسیعی از مواد را دارند.
۵ – به راحتی تجهیز می شوند.
۶ – روش طراحی خوب و تثبیت شده ای دارند.
قسمتهای اصلی این مبدل ها عبارتند از:
- لوله ها (Tubes)
- پوسته (Shell)
- بافل ها (Baffles)
- هد جلویی (Front Head)
- هد پشتی (Rear Head)
- صفحات تیوب ها (Tube Sheets)
- نازل ها (Nozzels)
پوسته: پوسته ها که در واقع در بر گیرنده لوله ها هستند از نظر اندازه، مواد سازنده و ضخامت محدوده وسیعی دارند. قیمت پوسته ها بیشتر از لوله ها می باشد. بنابراین معمولاً سعی می شود از حداقل پوسته استفاده شود.
لوله ها: لوله عنصر اصلی مبدل های پوسته و لوله هستند که در واقع سطح انتقال حرارت لازم را برای سیالاتی که در داخل و خارج آن جریان دارند را فراهم می سازند. لوله ها معمولا از فلزات مختلف به روش اکستروژن و بدون درز ساخته می شوند. جنس آنها معمولاً ا ز فولاد کم کربن، فولاد زنگ نزن، مس و …می باشد. لوله ها ممکن است به صورت مربعی۹۰ درجه یا در وضعیت چرخانده کنار هم قرار گیرند . در این حالت تمیز کردن خارج لوله ها راحت تر است. طرح مثلثی روش دیگری است که به علت زیاد بودن آشفتگی سیال، ضریب انتقال حرارت و افت فشار طرف پوسته را افزایش می دهد؛ و نیز مقدار بیشتری از لوله را می توان در قطر مشخصی از پوسته قرار داد. قطر لوله ها بین ۱۶mm  تا ۵۰ mm می باشد. ولی معمولاً از ۱۶mm  تا ۲۵mm استفاده می شود.
طول لوله ها نیز از ۱٫۸ متر تا ۷٫۳ متر انتخاب می شود. ضخامت لوله ها نیز با توجه به قطر آنها از ۱٫۲mm تا ۳٫۲ mm انتخاب می شود. گرچه هدف، افزایش انتقال حرارت به وسیله افزایش سرعت سیال ها در داخل لوله ها می باشد ولی این سرعت باید در حد مجاز باشد چون هرچقدر سرعت بیشتر شود،افت فشار افزایش می یابد وهمچنین نوسانات بیشتر می شود و باعث ایجاد شکستگی در اتصالات و زانویی ها می شود.
بافل ها: بافل ها معمولاً در قسمت پوسته مبدل استفاده می شوند برای اینکه لوله ها را در جای خود نگه دارند و جریان سیال داخل پوسته را به صورت چرخشی تبدیل کنند تا سرعت سیال و ضریب انتقال حرارت افزایش یابد و معمولاً به صورت های Segmental baffle, Disk-and-doughnut baffle, Orifice baffle می باشند.
بافل ها دو مشخصه اصلی دارند: برش بافل (Baffle Cut)، فاصله بافل ها ( Baffle Spacing Lb)
فاصله بافل ها فاصله دو بافل متوالی می باشد که معمولاً بین ۲۰% تا ۱۰۰% قطر پوسته انتخاب می شود و مقدار بهینه آن بین ۳۰% تا ۵۰% قطر پوسته می باشد. هرچقدر Lb کمتر باشد سرعت و افت فشار در پوسته بیشتر می شود. برش بافل ارتفاع بریده شده از بافل نسبت به قطر می باشد که معمولاً به صورت درصد بیان می شود و معمولاً ۲۵ % می باشد. هرچقدر Baffle Cut کمتر یا طول بریده شده کمتر شود سرعت و ضریب انتقال حرارت و افت فشار بیشتر می شود. بافل ها را می توان به دو دسته بافل های طولی Longitudinal Baffles و بافل های متقاطع یا مورب Transvers Baffles  نیز تقسیم بندی کرد که معمولاً به صورت زاویه دار با لوله ها قرار می گیرند و باعث ایجاد جریان ناآرام در اطراف پوسته می شوند. بافل های طولی برای کنترل مسیر جریان داخل پوسته استفاده می شوند.
صفحه تیوب: یکی از اجزای مهم مبدل ها که اصلی ترین سد بین تیوب ها و پوسته است و طراحی مناسب آنها برای اطمینان از کارایی سیستم لازم است، صفحه تیوب ها هستند. نحوه اتصال آنها به تیوب ها و پوسته هم می تواند به صورت جوش داده شده و هم به وسیله پیچ باشد.
گذرهای پوسته و لوله : ساده ترین مدل جریان برای لوله ها به این صورت است که سیال از یک طرف وارد شود و از طرف دیگر خارج گردد. این مدل تک گذر لوله است. برای بهتر نمودن انتقال حرارت سرعت بالاتری باید ایجاد نمود . این عمل به وسیله افزایش تعداد گذر لوله ها امکان پذیر است. از طرف دیگر با افزایش تعداد گذرهای لوله و افزایش سرعت سیال ، افت فشار زیاد می شود. در واقع انتقال حرارت باید در سرعت های بالا ایجاد شود و این افت فشار سیستم را زیاد می کند. در نتیجه تعداد گذرها، با توجه به دو فاکتور سرعت و افت فشار مشخص می شود. تعداد گذرهای لوله معمولاً از یک تا هشت می باشد. در موردگذرهای پوسته نیز معمولا از یک یا دو گذر استفاده می شود .حالت های مختلف گذرهای پوسته در استاندارد بین المللی TEMA با علامتهای E,F,G,H,J,K,X شناخته می شوند.
نازل ها : نازل ها برای انتقال سیال به بیرون و یا داخل مبدل استفاده می شوند.
اثرات حرارتی: 
اگر مواد مانند آهن بکار رفته شده در مبدل ها حرارت ببینند ممکن است دچار انبساط حرارتی گردند . به عنوان مثال در یک مبدل پوسته و لوله افزایش درجه حرارت باعث افزایش اندازه لوله ها و پوسته می شود . از آنجایی که این افزایش ها ممکن است با هم فرق کنند، تنظیم های مختلفی برای کاهش این اثرات حرارتی وجود دارد. این استرس های حرارتی با استفاده از لوله های U شکل نیز قابل جلوگیری می باشند. استفاده از مبدل ها با کلگی های ثابت برای زمانی که لوله ها کوتاه هستند یا اختلاف دما بین لوله و پوسته ماکزیمم ۳۰ درجه سلسیوس می باشد، استفاده می شود. در اکثر موارد از مبدل ها با کلگی های متحرک Floating-Head استفاده می شود.
انتخاب محل عبور سیال ها:
تصمیم گیری برای قرار دادن سیال در داخل پوسته و لوله و اینکه کدامیک از آنها در داخل لوله قرار داده شود و کدامیک داخل پوسته، به چند عامل بستگی دارد:
۱ – فشارها: سیال با فشار بالا در قسمت لوله قرار می گیرد، زیرا صخامت نسبی لوله (نسبت به قطر) بیشتر است.
۲- درجه حرارت: افزایش درجه حرارت باعث کاهش تنش مجاز مواد بکار رفته می گردد و در نتیجه ضخامت لازم برای دیواره ظرف نیز افزایش می یابد. این تاثیر عیناً شبیه فشار است. سیال با درجه حرارت زیاد بایستی در لوله جای داده شود.
۳ -خورندگی سیال ها: برای سیال های با خورندگی زیاد به مواد و آلیاژها ی گرانقیمت نیاز است . اگر فقط یکی از سیال ها خورنده باشد آن وقت گذاردن آن در داخل لوله باعث می شود که پوسته گرانقیمت از آلیاژ مرغوب نیاز نباشد. اما اگر سیال خورنده در پوسته قرار بگیرد آنگاه هم برای پوسته و هم برای لوله بایستی از موادی که در مقابل خوردگی مقاوم هستند استفاده شود.
۴ -تمیزی سیال ها : در بعضی از فرایندهای انتقال حرارت شرایط لازم جهت تمیزی سیال ها و آلوده نشدن آنها سخت تر از حالت های عادی است و ممکن است به آلیاژهای گرنقیمت نیاز باشد . در اینگونه مواقع بهتر است که سیال ها در داخل لوله قرار داده شوند.
۵ -خطر نشت: در بیشتر مبدل های حرارتی احتمال نشت سیال لوله ها از سیال پوسته کمتر است.
۶ -ویسکوزیته سیال ها: برای اینکه انتقال حرارت ماکزیمم شود، جریان هر دو سیال می بایستی ناآرام باشد. در صورتی که سیال لزج در داخل لوله باشد احتمال دارد جریان آن آرام شود پس بهتر است داخل پوسته قرار داده شود.
رسوب مبدل ها (Fouling):
هنگامی که یک مبدل حرارتی در سرویس قرار می گیرد در شروع کار سطوح انتقال حرارت آن تمیز است ولی با گذشت زمان در بعضی از سرویس ها مانند سیستم های قدرت فرایندهای شیمیایی، به تدریج توانایی انتقال حرارت آنها کم می شود. این وضعیت به علت جمع شدن موادی روی سطوح انتقال حرارت (همان لوله ها) که موجب افزایش مقاومت حرارتی در برابر انتقال حرارت می گردد به وجود می آید. یک فرایند صنعتی را در نظر بگیرید که شامل چندین دستگاه اصلی می باشد. در صورتی که تمام فرایند بخواهد به خاطر اینکه یکی از ابزار انتقال حرارت که توانایی خود را در فرایند انتقال حرارت از دست داده از کار بیفتد این حادثه از نظر اقتصادی ناخوشایند است. در استاندارد  TEMAضریب رسوب داده شده است تا به طراح کمک کند مبدل پوسته و لوله را طوری طراحی کند که بتواند برای مدتی به طرز رضایت بخشی کار کند. تا اینکه دوباره مبدل از مدار خارج شود و تمیز گردد. عواملی که باعث ایجاد رسوب می شوند اغلب عبارتند از:
۱ -وجود ذرات معلق در سیال
۲ -کاهش حلالیت نمک ها با افزایش دما (مثل نمک های منیزم)
۳ – خوردگی: بعنی تبدیل یک لایه از فلز (آهن) اکسید آن (اکسید آهن) وکه باعث کاهش ضریب رسانش می شود.
۴ -پدیده های بیولوژیکی (زیست محیطی): در آب رودخانه ها جلبک ها و موجودات زنده وجود دارند که با صافی جدا نمی شوند و داخل مبدل شروع به تکثیر می کنند.
۵ -به وجود آمدن کک: در کور ه های نفت مقداری از نفت می شکند و تبدیل به کک می گردد و روی دیواره رسوب می کند.
تمیز کردن و نگه داری از مبدل: Cleaning Maintenance 
مبدل ها باید به طور متناوب تمیز شوند و لوله ها تعویض شوند . داخل لوله ها به راحتی با استفاده از مواد تمیز کننده مانند بعضی مواد اسیدی و jet آب تمیز می شوند. ولی تمیز کردن خارج لوله ها احتیاج به باز کردن لوله ها و کلاف لوله ها (Tube Bundle) از مبدل دارد.
مبدل های صفحه ای (Plate heat exchanger): 
مبدل های حرارتی صفحه و قاب از قرار گرفتن یک سری صفحات فلزی در کنار یکدیگر در داخل یک قاب فلزی ساخته می شوند. این صفحات در داخل قاب توسط میله های بلند بهم فشرده می شوند. طول این میله ها در شیارهای (Gasket)  فاصله بین دو درپوش را طی می کنند و توسط مهره به درپوش محکم می گردند. واشر اطراف هر صفحه قرار داده می شود تا جریان سیال را در مجرای باریکی بین صفحات هدایت نماید و همچنین از نشت آنها به بیرون جلوگیری کند. در گوشه های هر صفحه مجرایی جهت ورود و خروج سیال گرم و سرد در نظر گرفته شده است و موقعیکه صفحات روی هم فشرده می شوند این محل های سوراخ شده در یک خط مستقیم قرار می گیرند و بدین وسیله هدرهای توزیع سیال در طول مبدل را به وجود می آورند. صفحات می توانند از هر فلزی با ابعاد معین ساخته شوند آنگاه نقوش مختلف توسط پرس و قالبهای مخصوص روی صفحات چاپ گردد. هنگامی که این صفحات در محل خود در کنار یکدیگر قرار می گیرند شیارهای موجود روی صفحات متوالی تشکیل یک سری کانال های باریک جریان را می دهند. و سیال ها از طریق مجرای خیلی باریک و ظریف بین صفحات متوالی عبور می نمایند. در مبدل های مختلف آرایش جریان می توانند متفاوت باشند. یکی از این آرایشها به صورت موازی مختلف الجهت می باشد. در این نوع ارایش جریان های هر کدام از سیالها فقط یک بار ارتفاع صفحات را طی می کنند در حالیکه در آرایشهای چندگذر یک سیال ممکن است ۲ بار و یا بیشتر ارتفاع مبدل را طی نماید.
امتیازات و کاربردها: 
یکی از امتیازات مهم و اساسی مبدل های حرارتی صفحه و قاب این است که سطح انتقال حرارت مبدل به آسانی از هم جدا می شوند. بعد از برداشتن مهره ها و میله های نگه دارنده و جداسازی صفحه متحرک انتهایی صفحات با لغزیدن روی صفحه باریکی برای معاینه از هم جدا می شوند. این امتیاز که صفحات به آسانی تمیز شوند و یا تعویض گردند باعث شده کاربرد این مبدل ها در صنایع غذایی و لبنیات توسعه یابد . اما از دیگر امتیازات مهمی که این مبدل ها نسبت به مبدل های پوسته و لوله دارند این است که در مقایسه با مبدل های پوسته و لوله بار حرارتی معینی حدوداً بین یک سوم تا یک چهارم انتقال حرارت لازم دارند. علتش را می توان به صورت زیر خلاصه نمود. توربولانس زیاد به علت حرکت سیال در مجاری باریک و ناهموار سبب افزایش ضریب انتقال حرارت می گردد. فاصله نزدیک به هم صفحات مانند این است که از لوله های با قطر کوچک استفاده شده است که این ضریب انتقال حرارت را افزایش می دهد. توربولانس زیاد سبب تقلیل سرعت کثیف شدن می شود . کاهش سطح انتقال حرارت باعث کاهش حجم و وزن می شود.
معایب:
با وجود تمام محاسن ذکر شده یک عیب مهم در مورد این مبدل ها وجود دارد و آن این است که سطوحی که باید توسط واشر آب بندی شود زیاد است. اغلب از مواد لاستیکی برای این کار استفاده می شود اما ماکزیمم فشار و درجه حرارت کاربردی نباید از ۲٫۷ Mpas و ۴۰۰ k تجاوز نماید . از واشرهای فیبری و پمبه نسوز کمپرس شده نیز می توان استفاده نمود که برای آن حداکثر درجه حرارت ۶۰۰ k و ۱٫۸ Mpas می باشد . یکی از مشکلاتی که معمولاً در هنگام کار این مبدل ها بوجود می آورند عدم آببندی کامل و صحیح واشر ها است . اولاً به خاطر اینکه عمر مفید گازکت ها کم است و ثانیاً نباید دوباره مورد استفاده قرار گیرند که معمولاً به این نکته توجه نمی شود.
  • کمپرسور
نام انگلیسی: Compressor
کمپرِسورها یا فشارندهها میتوانند برای فشرده کردن گاز یا مایعات به کار رود. البته در حالت دوم به آن پمپ میگویند. کمپرسورها یکی دیگر از انواع تجهیزات متحرک دوار مورد استفاده در صنایع فرآیندی هستند. معمولاً گاز پر فشار خروجی از کمپرسور ها را از یک سیسنم خنک کننده عبور میدهند تا دمای گاز دوباره به حد معمولی باز گردد. انواع گوناگونی از کمپرسور وجود دارد که برای مصارف صنعتی و خانگی طراحی شده اند.
کمپرسورها به طور عمومی دارای دو نوع محوری و شعاعی هستند: کمپرسور محوری هوا را از میان پره های خود عبور داده و به سمت عقب میراند. کمپرسور شعاعی (گریز از مرکز) بیشتر در موتورهای قدیمی استفاده میشده است. این نوع از کمپرسور دارای پره های بسته است و هوا را از میان پرههای خود عبور نمیدهد بلکه هوا را در جهت شعاع خود به سمت بیرون میراند و هوا پس از برخورد به پخش کننده (دیفیوژر) از سرعتش کاسته شده و به دما و فشارش افزوده میشود.
کمپرسور دستگاهی است که برای بالا بردن فشار گاز و یا انتقال آن از نقطه ای به نقطه دیگردر طول پروسس استفاده می شود. در واقع کمپرسور با افزایش سرعت گاز و تبدیل آن به فشار، جریان گاز را در سیستم راحت تر می کند. البته افزایش فشار در نوعی از کمپرسورها به وسیله کاهش حجم صورت می گیرد. مسئله مهمی که درکمپرسورها مطرح است، نسبت فشار خروجی، به ورودی کمپرسور است زیرا در ورودی کمپرسورها با افزایش فشار دمای گاز نیز بالا می رود و این افزایش دما در کار قطعات مختلف کمپرسور و سیستم روغن کاری و… اختلال ایجاد می کند. البته در کمپرسور می توان نسبت فشار را حتی تا ۱۰ رساند، ولی این امر با تدابیر خاصی امکان پذیر است که در قسمتهای بعد مفصلاً توضیح داده خواهد شد. در کمپرسورها افزایش فشار به دو صورت انجام می گیرد، برحسب این مورد دو نوع اساسی کمپرسور نیز وجود دارد که عبارتند از:
کمپرسورهای دینامیک که فشار گاز را با زیاد کردن سرعت آن و سپس، گرفتن سرعت گازافزایش میدهند. کمپرسورهای جابجایی مثبت که با کاهش حجم گاز، فشار آن را افزایش می دهند.
البته هر کدام از این کمپرسورها بر حسب شکل ساختمانی و نحوه عملکرد تقسیم بندی می شوند که در زیر به طور خلاصه آورده شده است:
۱ -کمپرسورهای دینامیک Compressors Dynamic سانتریفوژ Centrifugal compressor جریان محوری Axial Flow compressor
2-  کمپرسورهای جابجایی مثبت Positive displacement compressor رفت وبرگشتی Reciprocating compressor دورانی Rotary compressor
از بین کمپرسورهای نامبرده،کمپرسورهای رفت و برگشتی، سانتریفوژ و جریان محوری بیشتر از سایر کمپرسورها مورد استفاده قرار می گیرند که آنها را به طور مفصل بررسی خواهیم کرد.
کمپرسور سانتریفوژ
نام انگلیسی: Centrifugal compressors
5[pnu-eng.ir]
در این کمپرسورها افزایش فشار گاز بر اثرافزایش سرعت آن صورت می گیرد. به این صورت که سرعت گاز بر اثر حرکت پروانه (Impeller ) زیاد شده پس از آن سرعت گاز با برخورد با پخش کننده ها کاهش پیدا می کند و در عوض فشارش بالا می رود. کمپرسورهای سانتریفوژ دقیقاً مانند پمپهای سانتریفوژ تشکیل شده اند از یک پروانه که داخل پوسته ای می چرخد. اساس کار این کمپرسورها بر پایه نیروی گریز از مرکز طراحی شده است. درکمپرسورهای سانتریفوژ فاصله بین پوسته و پروانه خیلی کم است. بنابراین جنس محور کمپرسور باید از فلز یا آلیاژی باشد که در دورهای بالا حداقل انحنا را داشته باشد تا پروانه با پوسته تماس پیدا نکند. همچنین گاز ورودی به کمپرسور باید کاملاً خشک باشد و هیچ مایعی به همراه نداشته باشد . برای همین، قبل از هر کمپرسور یک مخزن آبگیر (Knock Drum out) قرار می دهند تا اگر احیاناً قطرات مایعی در گاز موجود است توسط این مخازن گرفته شود. چون قطرات مایع به پره های کمپرسور ضربه وارد کرده و آسیب می رساند. اگر فشار خیلی بالا مد نظر باشد، باید از کمپرسورهای سانتریفوژ چند مرحله ای استفاده کرد به خاطر اینکه با افزایش فشار گاز دمای آن نیز زیاد می شود و این افزایش دما اگر از حد معینی بیشتر شود باعث آسیب رساندن به قطعات کمپرسور و اختلال در سیستم می شود. همچنین ممکن است با افزایش فشار، قسمتی از گاز تبدیل به مایع شود و این قطرات مایع ایجاد شده در گاز باعث از بین بردن پره های کمپرسور می شود. به دلایل ذکر شده از کمپرسورهای چند مرحله ای استفاده می شود. به این ترتیب که پس از هر مرحله فشردگی، گاز را خنک کرده و مایع احتمالی در آن را توسط intercooler به وسیله مخازنی در بین راه گرفته سپس گاز خشک (بدون مایع) و خشک شده را به مرحله دوم می فرستند و به این ترتیب می توان پس از چند مرحله فشردن به فشار نسبتاً بالایی دست یافت.
مزایای کمپرسورهای سانتریفوژ 
کمپرسورهای سانتریفوژ نیاز به تعمیر کمتری دارند و می توانند مدت زیادی را بدون وقفه در سیستم کار کنند. علاوه برآن، این کمپرسورها اندازه کوچکتری نسبت به کمپرسورهای رفت و برگشتی دارند . زیرسازی کمپرسورهای سانتریفوژ کوچکتر از انواع دیگراست و نیاز به آب یا روغن خنک کننده ندارد چون به طور کلی محفظه این نوع کمپرسورها با هوا خنک می شود. جریان خروجی از این نوع کمپرسورها یکنواخت است و ضربه ای به بخش تخلیه کمپرسور وارد نمی کند. مزیت دیگری که این نوع کمپرسورها دارند این است که استهلاک کمتری نسبت به انواع دیگر دارند و این به خاطر کم بودن قطعات متحرک این کمپرسور است.
معایب کمپرسورهای سانتریفوژ 
کارکرد این کمپرسورها وابستگی شدید به وزن مخصوص، جرم مولکولی و نسبت Cp/Cv گاز ورودی دارد. کاهش وزن مخصوص و وزن مولکولی گاز باعث افزایش توان مصرفی کمپرسور خواهد شد، همچنین متراکم کردن گازهای با وزن مولکولی کم باعث افزایش تعداد مراحل در این کمپرسورها می شود. با وجود مزایایی که کمپرسورهای سانتریفوژی نسبت به کمپرسورهای رفت و برگشتی دارند، دارای راندمان کمتری نسبت به آنها هستند. موتورهای محرک کمپرسورها به دو صورت الکتریکی و توربینی است اما باتوجه به سرعت زیاد کمپرسورهای سانتریفوژی اگر برای این نوع کمپرسورها از موتورهای الکتریکی استفاده شود، برای تغییر سرعت دوران برای گازهای متفاوت نیاز به جعبه دنده می باشد که این امر احتمال لرزش و ارتعاش را بالا می برد و باعث افزایش هزینه های تعمیرات و استهلاک خواهد شد. در نتیجه کنترل جریان در این کمپرسورها با سهولت کمتری انجام می شود.
کمپرسور رفت و برگشتی
نام انگلیسی: Reciprocating Compressors
6[pnu-eng.ir]
این کمپرسورها را می توان به هر اندازه که مورد احتیاج باشد، ساخت . نوع یک مرحله ای آن با حرکت رفت پیستون فشار گاز را از مکش تا خروجی بالا می برد. اساس کار این کمپرسورها حرکت یک پیستون داخل یک سیلندر است که با کاهش حجم گاز، فشار آن را بالا می برد. کمپرسورهای رفت و برگشتی یک مرحل های را بیشتر برای فشار بین ۱۰۰ تا ۱۵۰ psig به کار می برند . از کمپرسورهای دو یا چندمرحل های زمانی استفاده می شود که فشار خیلی بالا ( مثلاً ۶۰۰  psig) مورد احتیاج با شد، اما با توجه به افزایش درجه حرارت گاز به هنگام فشرده شدن در کمپرسورهای چند مرحله ای، بعد از هر مرحله از یک خنک کننده استفاده می شود تا درجه حرارت گاز را برای مر حله بعدی پایین بیاورد. چون حرکت گاز در خروجی این کمپرسورها به طور یکنواخت صورت نمی گیرد، در هر حر کت رفت پیستون، به خروجی کمپرسور ضرباتی وارد می گردد. برای جلوگیری از این ضربات و یکنواخت کردن جریان تدابیر مختلفی به کار می رود که مهمترین آنها عبارتند از:
دو ضربه ای کردن پیستون، یعنی اینکه پیستون هم در حرکت رفت و هم در حرکت بر گشت مقداری گاز فشرده به خروجی مشتر کی وارد نماید.
به کار بردن ضربه گیر یا خفه کن (Damper): ضربه گیرمخزنی است که به طور وارونه در خروجی کمپرسور (اگر چند مرحله ای باشد در خروجی هر مرحله یک ضربه گیر) کار گذاشته می شود. اساس کار ضربه گیر بر پایه انبساط و انقباض گازی که وارد آن می شود استوار است یعنی اینکه در حر کت رفت پیستون گاز درون ضربه گیر فشرده می شود و در حرکت برگشت پیستون به علت افت فشار در خروجی کمپرسور، گاز منقبض شده درون ضربه گیر، منبسط شده، از آن خارج شدن وارد لوله خروجی کمپرسور می شود.
مزایای کمپرسور رفت و برگشتی
هنگامی که احتمال تغییر وزن مولکولی گاز ورودی به تاسیسات وجود دارد، از این کمپرسورها استفاده می شود به علت اینکه در این کمپرسورها عمل تراکم حساسیت زیادی به وزن مولکولی ندارد، این کمپرسورها در مورد گازهای همراه با نفت (Associate gas)، مناسب می باشند. این کمپرسورها راندمان بالاتری نسبت به کمپرسورهای سانتریفوژ دارند، اما دارای سرعت کمتری نسبت به سایر کمپرسورها هستند. لذا بدون احتیاج به جعبه دنده به طور مستقیم می توانند به موتور الکتریکی متصل گردند. برای شروع حرکت نسبت به سایر انواع کمپرسورها توان کمتری لازم دارند. همچنین زمانی که میزان گاز کم باشد، نسبت به انواع دیگر ارجح هستند.
کمپرسور جریان محوری
نام انگلیسی: Axial Flow compressors
7[pnu-eng.ir]
این کمپرسورها نیز مانند کمپرسورهای سانتریفوژ یک قسمت چرخان (Rotor) دارند که سرعت سیال را بالا می برد اما برخلاف کمپرسورهای سانتریفوژ که جریان به صورت شعاعی می باشد، جریان به صورت موازی با محور کمپرسور حرکت می کند. ساختمان این نوع کمپرسورها به صورتی است که نصف فشار گاز در قسمت چرخان (Rotor) و نصف دیگر در قسمت ثابت (Stator) تولید می شود. پره های ثابت شده بر محور چرخان به ترتیب از قسمت مکش تا خروجی کمپرسور کوچکتر گشته و باعث بالا رفتن فشار ساکن (pressure static ) وانرژی جنبشی (kinetic Energy) گاز می شود. سیستم روغن زنی و سیستم کنترل جریان در سرعت های مختلف در این کمپرسورها دقیقا شبیه کمپرسورهای سانتریفوژ است.
مزایای کمپرسور جریان محوری 
این نوع کمپرسورها اخیرا مصرف صنعتی زیادی پیدا کرده و برای حجم های خیلی بالا حتی تا ۸۶۰۰۰۰ فوت مکعب در دقیقه مناسب ترین کمپرسور می باشد. در مقام مقایسه با کمپرسورهای سانتریفوژ برای فشردگی یک حجم معین گاز قطر چرخان (Rotor) کمپرسور جریان محوری نصف قطر پروانه کمپرسور سانتریفوژ خواهد بود. اگر کمپرسور جریان محوری خوب طراحی و ساخته شود، سرعت گازمی تواند به ft/s 400 در خروجی برسد. هزینه اولیه ساختن یک کمپرسور جریان محوری با هزینه اولیه ساختن یک کمپرسور سانتریفوژ برای انجام کار معین برابر است، ولی هزینه نیروی محرکه کمپرسور جریان محوری کمتر از هزینه نیروی محرکه کمپرسور سانتریفوژ می باشد. یعنی اینکه برای یک کار معین، کمپرسور جریان محوری توربین یا موتور برقی کوچکتری نیاز دارد که این خود باعث کم شدن هزینه های بعدی می گردد. معایب کمپرسور جریان محوری اگر چه این کمپرسورها برای جریانهای بالاتری نسبت به کمپرسورهای سانتریفوژ استفاده می شود اما ارتفاع فرستادن گاز در این کمپرسورها خیلی پایین است و تقریبا کمتر از نصف کمپرسورهای سانتریفوژ می باشد که به معنی این است که فشار خروجی در این نوع کمپرسورها خیلی کمتر از کمپرسورهای سانتریفوژ است. مثلا برای رسیدن به فشار psig 65 به دوازده مرحله فشرده کردن گاز نیاز است که این خود باعث افزایش حجم اشغال شده توسط کمپرسور و سایر هزینه ها می شود. با توجه به موارد ذکر شده نتیجه می شود این کمپرسورها راندمان کمتری نسبت به کمپرسورهای سانتریفوژ دارند.
  • رآکتور
نام انگلیسی: Reactor
راکتور یک ظرف یا محفظه با شکل های مختلف می باشد که در آن واکنش شیمیایی صورت می گیرد و در آن مواد ورودی به محصولات تبدیل می شوند. راکتورها از لحاظ عملکردشان به گروههای ریز تقسیم بندی می شوند:
- راکتورهای ناپیوسته،
- راکتورهای نیمه پیوسته،
- راکتور های مخلوط شونده،
- راکتورهای لوله ای و
- راکتورهای بستر سیال
واکنش های شیمیایی که در داخل راکتور صورت می گیرند به دو دسته کلی متجانس Homogenous و نامتجانس Heterogeneous  تقسیم بندی می شوند. واکنش ها همچنین به دو دسته پلیمری و غیرپلیمری تقسیم می شوند.
واکنش های متجانس واکنش هایی هستند که در آن تمام ترکیب شوندگان در یک فاز که ممکن است گاز، مایع و یا جامد باشد، موجود هستند . همچنین در صورتیکه واکنش کاتالیزوری باشد، کاتالیزور هم بایستی در همان فاز وجود داشته باشد . واکنش های نامتجانس ،واکنش هایی هستند که برای انجام آنها حداقل دو فاز لازم باشد. متغیرهای زیادی سرعت واکنش را تغییر می دهند، در سیستم های متجانس ، دما ، فشار و غلظت متغیرهای واضحی هستند. در سیستم های نامتجانس به دلیل آنکه بیش از یک فاز وجود دارد و در طول واکنش مواد بایستی از یک فاز به فاز دیگر متصل شوند، علاوه بر دما، فشار و غلظت، سرعت انتقال جرم و سرعت انتقال حرارت نیز اهمیت دارد.
سه پارامتر مهمی که جهت توصیف عملکرد راکتور مورد استفاده قرار می گیرد عبارتند از:
درصد تبدیل Conversion: نسبت مقدار مواد واکنش دهنده مصرفی در راکتور به مقدار مواد واکنش دهنده ای به راکتور تغذیه می باشد. اگر واکنش برگشت پذیر باشد، حداکثر درصد تبدیلی که به آن می توان رسید درصد تبدیل تعادلی نامیده می شود.
انتخاب پذیری Selectivity: نسبت مقدار محصول مطلوب تولید شده به مقدار مواد واکنش دهنده مصرفی در راکتور می باشد.
بازده راکتور Yield: مقدار محصول مطلوب تولید شده به مقدار مواد واکنش دهنده ای که به راکتور تغذیه می شود
 حال به بررسی متغیرهای مهمی که بر عملکرد راکتور تاثیر دارند می پردازیم.
غلظت راکتور: هنگامی که بیش از یک ماده واکنش دهنده وجود داشته باشد، اغلب استفاده از مقدار بیش از نیاز یکی از واکنش دهنده ها نتیجه مطلوبی بدست خواهد داد. مخصوصاً اگر بخواهیم یکی از مواد به طور کامل مصرف شود (به علت قیمت بالا یا خطرناک بودن) گاهی اوقات مناسب است که یک ماده خنثی همراه با خوراک به راکتور تغذیه شود و یا قبل از پیشرفت کامل واکنش، محصول تولیدی خارج شود. بعضی اوقات نیز استفاده از یک مسیر برگشتی از فراورده های جانبی ناخواسته به راکتور مطلوب است. در مورد واکنش های برگشت ناپذیر اگر یکی از ترکیبات ورودی بیش تر از مقدار مورد نیاز به واکنش وارد شود، می تواند ماده دیگر را به سمت کامل کردن سوق دهد. به عنوان مثال، واکنش بین اتیلن و کلر برای تولید دی کلرواتان را در نظر بگیرید. اگر از یک مقدار اتیلن اضافی جهت حصول اطمینان از تبدیل کامل ماده کلر استفاده شود مشکل حضور کلر در سیستم جداسازی بعدی از بین می رود. معمولاً در یک واکنش اگر یکی از اجزاء خطرناک تر باشد (مانند کلر در این مثال) باید از کامل شدن آن مطمئن شویم.
اگر واکنش برگشت پذیر باشد هدف افزایش درصد تبدیل تعادلی می باشد. اگر یکی از خوراک ها را به مقدار اضافی وارد کنیم می توانیم درصد تبدیل تعادلی را افزایش دهیم. گاهی اوقات با حذف مداوم محصول یا یکی از محصولات از راکتوری که واکنش در آن در حال پیشرفت است، می توان درصد تبدیل تعادلی را افزایش داد. مثلا به وسیله تبخیر کردن ماده ای از راکتور فاز مایع. یک راه دیگر این است که واکنش در مراحل پشت سر هم همراه با جداسازی محصولات در مراحل میانی صورت گیرد.
دمای راکتور: انتخاب دمای راکتور به عوامل زیادی بستگی دارد. عموماً این انتخاب باید به گونه ای باشد که سرعت های زیاد واکنش و حجم کمتر راکتور را ایجاد نماید. به طور عملی محدودیت هایی در انتخاب دمای راکتور وجود دارد، از جمله ملاحظات ایمنی، محدودیت های جنس ساختمان راکتور و یا حداکثر دمای عملکرد کاتالیست. برحسب نوع واکنش انتخاب دما متفاوت خواهد بود. واکنشهای گرماگیر اگر یک واکنش گرماگیر باشد، عملکرد در دمای بالا باعث افزایش درصد تبدیل می شود . همچنین دمای بالا، سرعت واکنش را زیاد و حجم راکتور را کم می کند. بنابراین برای واکنش های گرماگیر تاآنجا که ممکن است، درجه حرارت بالا در نظر گرفته می شود به گونه ای که با ملاحظات ایمنی، محدودیت های جنس ساختمان راکتور و عمر کاتالیست مطابقت داشته باشد.
واکنش های گرمازا: برای واکنش های برگشت ناپذیر گرمازا، تا آنجا که ممکن است، با توجه به ساختمان مواد، عمر کاتالیست و مسائل ایمنی، باید درجه حرارت را پایین در نظر گرفت. در این صورت حجم راکتور حداقل خواهد شد. چنانچه واکنشی گرمازا و برگشت پذیر باشد، عملکرد در دمای پایین حداکثر مقدار درصد تبدیل را افزایش می دهد. لیکن عملکرد در دمای پایین سرعت واکنش را کاهش می دهد و در نتیجه باعث افزایش حجم راکتور خواهد شد. بنابراین در ابتدای واکنش یعنی هنگامی که از حالت تعادل دور هستیم؛ استفاده از درجه حرارت بالا به منظور افزایش سرعت واکنش برتری دارد. اما همانطور که با گذشت زمان به حالت تعادل نزدیک می شویم، برای افزایش مقدار حداکثر درصد تبدیل باید درجه حرارت را پایین آورد. لذا برای واکنش های برگشت پذیر گرمازا، همانطور که درصد تبدیل زیاد می شود، درجه حرارت ایده آل به طور مداوم کاهش می یابد.
اگر در راکتور همراه واکنش اصلی واکنش های دیگری نیز صورت گیرد که باعث تولید محصولات جانبی شوند، باید در دمایی عمل کرد که میزان تولید محصول اصلی بیشتر باشد. این کار اغلب به حداقل کردن حجم راکتور ترجیح دارد.
کنترل دما: در وهله اول عملکرد راکتور را آدیاباتیک یا عایق بندی شده فرض می کنیم . طراحی چنین سیستمی ساده ترین و ارزان ترین طراحی ممکن است.
اگر عملکرد عایق بندی شده در واکنش های گرمازا باعث افزایش غیرقابل پذیرش درجه حرارت و در واکنش های گرماگیر باعث کاهش غیرقابل پذیرش درجه حرارت شود، با یکی از راهکارهای زیر سر و کار داریم:
انتقال حرارت غیرمستقیم با راکتور: اگر امکان عملکرد آدیاباتیک راکتور وجود نداشته باشد باید از حرارت غیر مستقیم و یا با خنک کردن غیر مستقیم استفاده نمود . این کار با استفاده از یک سطح انتقال حرارت داخلی یا خارجی در راکتور امکان پذیر است مانند استفاده از کویل ها و ژاکت ها.
تزریق گرم و تزریق سرد: تزریق مستقیم خوراک تازة سرد به نقاط میانی راکتور، تزریق سرد نامیده می شود. این عمل جهت کنترل دمای واکنش های گرمازا موثر است. اگر واکنش گرماگیر باشد، می توان خوراک تازه پیش گرم شده را به نقاط میانی راکتور تزریق کرد. این عمل تزریق گرم نام دارد.
حامل حرارت: افزایش یک ماده خنثی به خوراک راکتور، افزایش دمای واکن شهای گرمازا و یا کاهش دما در واکنش های گرماگیر را کاهش می دهد. باید تا آنجا که ممکن است از یکی از سیالات موجود در فرایند به عنوان حامل استفاده کرد. حتی اگر درجه حرارت راکتور در محدوده های قابل قبول کنترل شود، شاید لازم باشد که جریان خروجی از راکتور به سرعت سرد شود تا واکنش سریعاً متوقف شده و از تشکیل بیش از اندازه فراورده های جانبی جلوگیری به عمل آید.
عملیات خنک کردن را می توان به کمک انتقال حرارت غیر مستقیم با استفاده از تجهیزات مناسب و یا به وسیله انتقال حرارت مستقیم از طریق مخلوط کردن با یک سیال دیگر انجام داد . وضعیتی که معمولاً زیاد با آن مواجه می شویم زمانی است که محصولات گازی در یک راکتور نیاز به سرد کردن سریع دارند و این کار به وسیله مخلوط کردن محصول با یک مایع صورت می گیرد که در حین کار، مایع تبخیر می شود. حرارت لازم برای تبخیر مایع باعث می شود که محصولات گازی به سرعت سرد شوند. در واقع سرد کردن محصول خروجی از راکتور به کمک انتقال حرارت مستقیم به بسیاری از دلایل می توند مورد استفاده قرار گیرد:
واکنش بسیار سریع است و باید فوراً متوقف شود تا از تشکیل فراورده های جانبیِ اضافی جلوگیری به عمل آید.
محصولات راکتور آنقدر داغ یا خورنده هستند که اگر به طور مستقیم از یک مبدل عبور کنند، جنس ویژه ای برای ساختمان راکتور و مبدل یا طراحی مکانیکی گرانی لازم خواهد بود.
 سرد کردن محصولات راکتور باعث می شود که ضریب کثیفی در مبدل های حرارتی متداول افزایش یابد. مایعی که برای انتقال حرارت مستقیم بکار می رود باید به گونه ای انتخاب شود که به آسانی قابل جداسازی از محصول و برگرداندن به راکتور باشد . در چنین وضعیتی هزینه عملیاتی به حداقل خواهد رسید. از استعمال مواد خارجی، یعنی موادی که بیش از این در فرایند وجود نداشته اند، باید اجتناب کرد. چراکه در اغلب موارد جداسازی و یا برگرداندن این مواد با بازده بالا مشکل است. به علاوه مواد خارجی بازگشت داده نشده در جریان خروجی مشکل ساز خواهند بود. فشار راکتور افزایش فشار در واکنش های برگشت ناپذیر فاز بخار سرعت واکنش را زیاد می کند و لذا حجم راکتور را کاهش می دهد. این امر به دو علت ایجاد می شود؛ هم به علت کاهش زمان اقامت مورد نیاز برای یک تبدیل معین در راکتور و هم به وسیله افزایش دانسیته بخار. به طور کلی پارامتر فشار اثر ناچیزی بر روی سرعت واکنش های فاز مایع دارد. انتخاب فشار در واکنش های برگشت پذیر فاز بخار به این امر بستگی دارد که آیا واکنش همراه با کاهش و یا افزایش در تعداد مول ها است و یا اینکه تولید محصول با واکنش ها و محصولات جانبی همراه است یا نه. اگر واکنش برگشت ناپذیر با کاهش تعداد مول ها همراه باشد، افزایش فشار راکتور، درصد تبدیل تعادلی و سرعت واکنش را افزایش و همچنین حج م راکتور را کاهش می دهد ؛ بنابراین در این حالت باید فشار در بالاترین حد عملیاتی تنظیم شود؛ نباید از این نکته غافل شد که فشار بالا از طریق توان بالاتر کمپر سور تامین می شود که از نظر هزینه قابل توجه است. به علاوه ساختمان مکانیکی لازم برای فشار بالا هزینه گزاف ی را ایجاد می کند. در واکنش های برگشت ناپذیر که با افزایش تعداد مولها همراه است کاهش در فشار راکتور، درصد تبدیل تعدلی را افزایش می دهد؛ لیکن عملکرد تحت یک فشار کم، سرعت واکنش های فاز بخار را کاهش و حجم راکتور را افزایش می دهد. بنابراین در ابتدای کار که از تعادل دور هستیم، استفاده از فشارهای بالا به منظور افزایش سرعت واکنش مناسب تر است؛ اما هنگامی که به شرایط تعادلی نزدیک می شویم، برای افزایش درصد تبدیل بالا فشار را باید کاهش داد. اگر در راکتور واکنش های جانبی و محصولات جانبی نیز تولید شود، فشار باید به گونه ای انتخاب شود که محصولات جانبی کمتری تولید شود. در این حالت اغلب افزایش تولید محصول مطلوب نسبت به حجم راکتور ترجیح داده می شود.
برای واکنش های فاز مایع فشار اثر بسیار کمی دارد و فشار احتمالاً باید به گونه ای انتخاب شود که: از تبخیر محصولات جلوگیری کند اجازه دهد تا یکی از محصولات در واکنش برگشت پذیر تبخیر شود؛ زیرا با خروج این جزء مقدار حداکثر درصد تبدیل افزایش می یابد. فاز راکتور اگر امکان یک انتخاب آزاد بین واکنش های فاز مایع و واکنش های فاز گاز وجود داشته باشد، معمولاً عمل در فاز مایع ترجیح داده می شود چون حجم راکتور مورد نیاز در واکنش های فاز مایع کوچکتر است و نیز تجهیزات مورد استفاده برای فاز مایع کم هزینه تر می باشد. عدم کارایی راکتور در استفاده از مواد ورودی می تواند به صورت های زیر باشد: چنانچه درصد تبدیل بدست آمده در راکتور پایین بوده و جدا کردن و بازگرداندن خوراک واکنش نداده دشوار باشد. از طریق تشکیل فراورده های جانبی ناخوسته، گاهی اوقات فراورده های جانبی خوراک محصول با ارزش است، گاهی اوقات به عنوان یک سوخت ارزش دارد . اما گاهی اوقات مشکل آفرین بوده و نیاز به فرایندهای تصفیه پساب گران قیمت دارد. ناخالصی های خوراک می تواند واکنش را به تشکیل فراورده های جانبی سوق دهد. بهترین راه اجتناب از این امر، خالص سازی خوراک قبل از واکنش است. کارایی خوب راکتور مستلزم کنترل دقیق متغیرهای عملیاتی مانند فشار، دما و غلظت می باشد. راکتورها از لحاظ عملکردشان به گروههای ریز تقسیم بندی می شوند:
راکتور ناپیوسته
نام انگلیسی: Batch Reactor
8[pnu-eng.ir]
از دیدگاه تاریخی، راکتورهای ناپیوسته از آغاز صنعت شیمیایی مورد استفاده بوده و هنوز هم به صورت وسیعی در تولید مواد شیمیایی با ارزش افزودنی بالا مورد استفاده می باشند. در این راکتورها مواد واکنش دهنده در همان ابتدای عمل وارد راکتور می شوند . محتویات راکتور برای مدت مشخصی کاملاً مخلوط شده و پس از مدت زمان معینی که واکنش پیشرفت کرد، محتویات داخل راکتور تخلیه می شوند. در این راکتورها غلظت در طول زمان تغییر می کند اما اختلاط کامل باعث می شود که در لحظه درجه حرارت و ترکیب در سرتاسر راکتور یکنواخت باشد. این راکتورها در موارد زیر بکار برده می شوند. تولید در مقیاس کوچک صنعتی (ظرفیت کم) آزمایش کردن فرایندهای ناشناخته تولید صنعتی محصولات گران قیمت برای محصولاتی که تولید آنها در شرایط مداوم مشکل باشد امتیاز این راکتورها در این است که با دادن زمان لازم برای انجام واکنش، مواد اولیه با درصد تبدیل بالا به محصولات مورد نظر تبدیل می گردند و احتیاج به وسایل اضافی و کمکی کمتری دارند . در حالیکه استفاده از این نوع راکتورها محدود به واکنش های متجانس فاز مایع می باشد . از دیگر محدودیت های این نوع راکتورها بالا بودن هزینه تولید در واحد حجم محصول تولید شده می باشد (به دلیل بالا بودن زمان سیکل و زمان تخلیه و شستشو). همچنین تولید صنعتی در مقیاس بالا در اینگونه راکتورها مشکل می باشد.
راکتور نیمه پیوسته
نام انگلیسی: Semi Batch Reactor
9[pnu-eng.ir]
راکتورهای نیمه پیوسته نیز همان محدودیت های راکتور ناپیوسته را دارد. از امتیازات راکتور های نیمه پیوسته کنترل خوب حرارت و کنترل واکنش های نامطلوب و محدود کردن تولید محصولات ناخواسته می باشد . این عمل از طریق وارد کردن تدریجی یکی از اجزاء ترکیب شونده با غلظت کم میسر می گردد . راکتور های نیمه پیوسته اغلب برای واکنش های دوفازی که یکی از اجزاء ترکیب شونده گاز باشد مورد استفاده قرار می گیرد و جزء گازی به صورت حباب به داخل فاز مایع درون راکتور تغذیه می گردد.
راکتور مخلوط شونده
نام انگلیسی: Mixed Reactor
10[pnu-eng.ir]
در این راکتور مواد اولیه وارد راکتور می شوند و پس از اختلاط در راکتور و اقامت برای مدت زمان مشخصی در راکتور، از راکتور خارج می شوند. راکتور مخلوط شونده مشتمل بر انواع پره ها و بافل و سیستم سرمایش و گرمایش است. این راکتور زمانی که یک واکنش شیمیایی احتیاج به همزدن شدید داشته باشد مورد استفاده قرار می گیرد . کنترل حرارت در این راکتورها به آسانی انجام می گیرد. یکی از محدودیت های این نوع راکتورها درصد تبدیل پایینتر آنها در واحد حجم محصول تولید در مقایسه با سایر راکتورهای پیوسته باز می باشد. به همین دلیل حجم راکتور مذکور را باید خیلی بزرگ انتخاب کرد تا به درصد تبدیل بالا دست یافت . در صنعت معمولاً از یک سری راکتور مخلوط شونده پشت سر هم استفاده می شود. راکتورهای Mixed برای اغلب واکنش های متجانس در فاز مایع استفاده می شود. در این راکتورها، جریان خوراک ومحصول پیوسته است و فرض می شود که محتویات راکتور کاملاً بهم می خورد . این عمل منجر به یکنواختی درجه حرارت و ترکیب در راکتور می شود. به علت این اختلاط یک جزء سیال ممکن است در همان لحظه ای که وارد راکتور می شود آنرا ترک کند یا برای مدت زمان زیادی در داخل راکتور باقی بماند . زمان اقامت هرکدام از اجزاء سیال در راکتور متفاوت است.
راکتور لوله ای
نام انگلیسی: Tubular Plug Reactor
11[pnu-eng.ir]
در صنایع شیمیایی برای فرایندهای با مقیاس بزرگ معمولاً از راکتورهای لوله ای استفا ده می شود . زیرا نگهداری سیستم راکتورهای لوله ای آسان می باشد (چون دارای قسمت های متحرک نیستند) و معمولاً بالاترین درصد تبدیل مواد اولیه در واحد حجم راکتور را در مقایسه با سایر راکتورهای سیستم جاری دارا هستند. از محدودیت های این راکتورها مشکل کنترل حرارتی برای واکنش های گرمازایی است که بسیار سریع عمل می کنند و نهایتاً منجر به نقاط داغ Hot Spot می گردند. نقاط داغ Hot Spot باعث می شوند که کیفیت محصول کاهش یابد و دستگاه آسیب ببیند. اغلب واکنش های متجانس گازی در این نوع راکتورها انجام می گیرند. در این راکتورها نیز مانند راکتورهای Batch زمان اقامت برای تمام اجزاء سیال مساوی است . سیستم متشکل از تعدادی واحدهای سری از راکتورهای مخلوط شونده Mixed ، عملکردی مشابه با یک راکتور لوله ای دارد. هرچقدر واحدهای پشت سر هم بیشتر باشد، خواص سیستم به حالت لوله ای نزدیکتر است.
راکتور بستر سیال
نام انگلیسی: Fluidized Bed Reactor
12[pnu-eng.ir]
نوع دیگری از راکتورهای کاتالیزوری، راکتور بستر سیال می باشد . در راکتور بستر سیال همانند راکتور مخلوط شونده، محتویات داخل راکتور اگرچه غیر متجانس می باشند ولی به خوبی با یکدیگر مخلوط شده و باعث توزیع یکنواخت دما در تمام نقاط راکتور می گردند. به دلیل توزیع مناسب حرارت در داخل این راکتورها مشکل نقاط داغ وجود ندارد. به دلیل ظرفیت بالا و کنترل حرارت خوب ، این نوع راکتورها، کاربرد صنعتی زیادی پیدا کرده اند. از امتیازات برجسته این راکتورها سهولت احیا و جایگزین کردن کاتالیزور می باشد.
مزایا و معایب بسترهای سیال برای عملیات صنعتی مزایا عبارتند از:
جریان ملایم و مایع مانند ذرات اجازه می دهد که عملیات به صورت اتوماتیک و به طور ساده کنترل شود. مخلوط شدن سریع جامدات باعث ایجاد شرایط یکنواخت و جلوگیری از ایجاد نقاط داغ و سادگی و اطمینان کنترل می شود. در مقابل تغییرات سریع به آرامی عملکرد نشان می دهد. گردش ذرات جامد بین دو بستر سیال امکان برداشت (یا اضافه) کردن مقدار زیاد حرارت تولید شده (یا مورد نیاز) راکتورهای بزرگ را فراهم می کند. برای عملیات در مقیاس بزرگ مناسب هستند. در مقایسه با سایر روش های تماس، سرعت انتقال جرم و حرارت بالاست. شدت انتقال حرارت بالا می باشد، در نتیجه سطح انتقال حرارت نسبتاً کمتری نیاز است. معایبشان عبارتند از: برای بسترهای حبابی شامل ذرات ریز، نحوه جریان گاز و انحراف از حالت ایده آل باعث بهره پایین تماس می گردد. زمان اقامت دانه های جامد کاتالیست متفاوت است. این موضوع به علت مخلوط شدن ذرات در بستر و خروج تصادفی آنها می باشد . این موضوع باعث فراوری غیر یکنواخت کاتالیست در احیاکننده می شود که نتیجه آن کم شدن بهره عملکرد است. ذرات شکننده، خرد شده و توسط گاز به بیرون حمل می شوند که بایستی جایگزین شوند. خوردگی لوله ها و ظروف به وسیله اصطکاک با ذرات می تواند جدی باشد. مزایای اقتصادی قابل توجه بستر سیال عامل اصلی استفاده موفقیت آمیزِ این دستگاه در صنعت می باشد . اما چنین موفقیتی بستگی به شناخت و فائق آمدن بر معایبشان دارد.
راکتور بستر ثابت
نام انگلیسی: Fixed Bed Reactor
13[pnu-eng.ir]
راکتورهای بستر ثابت در واقع همان راکتورهای لوله ای پر شده از دانه های جامد کاتالیزور هستند . واکنش های غیر متجانس از نوع گازی و کاتالیزوری دراین نوع راکتورها انجام می گیرد . از معایب این نوع راکتورها مشکل کنترل حرارتی و مشکل جایگزینی کاتالیزور بعد از غیر فعال شدن آن می باشد. همچنین بعضی اوقات پدیده کانالیزه شدن مواد گازی در حین عبور از درون راکتور باعث کاهش زمان اقامت لازم برای انجام واکنش می شود که این خود یکی دیگر از محدودیت های این نوع راکتور می باشد. امتیاز این نوع راکتورها، درصد تبدیل بالای آن در واحد وزن کاتالیزور مصرف شده در مقایسه با سایر راکتورهای کاتالیزوری می باشد. از دیگر مزایای این راکتور قیمت پایین تر آن نسبت به راکتور های مشابه مخصوصاً راکتور بستر سیال می باشد.
راکتور پلیمریزاسیون
نام انگلیسی: Polymerization reactor
14[pnu-eng.ir]
واکنشهای پلیمریزاسیون با توجه به تنوع تولیدشان از استفاده کننده های عمده راکتورها به شمار می روند. البته ساختار کلی راکتورها تفاوت چندانی با راکتورهای سایر مواد ندارد: اما با توجه به اهمیت این واکنشها، مطالبی در این مورد بیان می شود.
تعاریف و بیان تفاوتها در راکتورهای ناپیوسته (Batch Reactors):
 تمامی اجزاء مخلوط واکنش به راکتور وارد می شوند و تا پایان واکنش در راکتور باقی می مانند. معمولاً در ابتدای پلیمریزاسیون در راکتورهای ناپیوسته یک گرم کن وجود دارد که طی آن دمای مخلوط به دمای لازم برای شروع واکنش افزایش داده می شود. سپس واکنش پلیمریزاسیون شروع شده و به علت گرمازایی قابل توجه آن دمای مخلوط واکنش می تواند افزایش یابد به همین دلیل در راکتورهای ناپیوسته باید قابلیت گرم و سرد کردن سریع و کافی و همچنین سیستم کنترل درجه حرارت موثر پیش بینی گردد. فرایندهای ناپیوسته برای پلیمریزاسیون با درجه تبدیل بالا مناسب است. از طرف دیگر این سیستمها برای بروز انفجار حرارتی مستعد هستند. فرایندهای ناپیوسته عمدتاً در زمینه پلیمریزاسیون رادیکالی به کار می روند.
راکتور نیمه ناپیوسته (Semi Continuous Reactors) یا (Semi Batch): 
در راکتورهای نیمه پیوسته مواد برخی از مواد واکنش کننده ممکن است به تدریج به راکتور اضافه شوند یا آنکه محصولات جانبی تولید شده در طی واکنش از راکتور خارج گردند. در بسیاری از پلیمریزاسیونهای رادیکالی معمول است که منومر، حلال و یا شروع کننده را به منظور حفظ درجه حرارت و افزایش سرعت تولید به تدریج به راکتور اضافه می کنند . اضافه کردن تدریجی کومنومر در کوپلیمریزاسیون نیز وقتی که اختلاف فعالیت منومرها زیاد است از جمله کاربردهای این فرایند است. در پلیمریزاسیونهای نیمه پیوسته ممکن است که تمامی مواد واکنش کننده در ابتدای واکنش به راکتور اضافه گردند ولی قبل از تشکیل محصولات جانبی ، باید از راکتور خارج شو ند. پلیمریزاسیونهای مرحله ای از این نوع سیستمها هستند. تبخیر محصولات جانبی یک عامل موثر در جذب حرارت واکنش است که در برخی از موارد می تواند به قدری شدید باشند که باعث افت دمای واکنش گردد . در این حالت برای جبران حرارت از دست رفته حتی ممکن است نیاز به حرارت دهی نیز باشد .
راکتورهایی که برای فرایند نیمه پیوسته مورد استفاده قرار می گیرند مشابه با راکتورهای ناپیوسته است با این تفاوت که امکان افزایش مداوم مواد اولیه به آن و یا خروج محصولات جانبی از آن پیش بینی شده است. در راکتورهای پیوسته(Continuous Reactors)  مواد واکنش دهنده با شدت جریان ثابت به درون راکتور رانده شده و محصولات نیز به طور مداوم از راکتور خارج می گردند. پس از راه اندازی یک راکتور پیوسته، راکتور پس از عبور از یک حالت انتقالی به یک شرایط پایدار می رسد. در این شرایط شدت حرارت زائی سیستم نیز به مقدار ثابتی می رسد. فرایندهای مداوم عملیات آسان تر و هزینه کمتری دارد و هنگامی که ظرفیت تولید بالا باشد مورد استفاده قرار می گیرند. در موارد خاص پلیمریزاسیون در راکتورهای ناپیوسته که دارای انعطاف پذیری بیشتری برای تولید پلیمرهایی با درجا ت تبدیل مختلف هستند، انجام می گیرد.
فرایندهای پیوسته در راکتورهای همزن دار (Continuous Stirred Tank Reactors ,CSTR) و راکتورهای لوله ای (Tubular Reactor) قابل انجام است. راکتورهای همزن دار پیوسته مشابه با راکتورهای ناپیوسته هستند با این تفاوت که امکان ورود مداوم مواد اولیه به آنها و خروج محصول نهایی از آنها پیش بینی شده است.
از راکتورهای همزن دار پیوسته به صورت سری (Cascade) در صنعت برای پلیمریزاسیون امولسیونی مثل وینیل کلراید و وینیل استات استفاده می گردد. در راکتورهای لوله ای به منظور جذب حرارت آزاد شده، قطر راکتور همواره کوچک اختیار می شود.
انجام فرایندهای مختلف پلیمریزاسیون در راکتورهای پلیمریزاسیون:
تکنولوژی پلیمریزاسیون جرمی برای پلیمریزاسیونهای با رشد مرحله ای، مرسوم است، زیرا به واسطه کمی انرژی آزاد شده، جذب حرارت به سهولت انجام می پذیرد. به علت پایین بودن ویسکوزیته تا درجات تبدیل بالا، اختلاط نیز به نحو موثری قابل انجام است . حرارت آزاد شده قابل توجه و افزایش سریع ویسکوزیته در پلیمریزاسیون با رشد زنجیری، کارایی تکنولوژی جرمی را برای این نوع مکانیسم پلیمریزاسیون کاهش می دهد .زیرا بر خلاف حالت قبل، افزایش سریع ویسکوزیته و در نتیجه عدم امکان کنترل درجه حرارت، دستیابی به درجات تبدیل بالا را مقدور نمی سازد. محلول پلیمریزاسیون جرمی از درجه خلوص بالایی برخوردار بوده و عملیات تخلیص کمتری را می طلبد. انجام پلیمریزاسیون در حضور یک حلال از مشکلات انتقال حرارت و اختلاط می کاهد. پلیمر و منومر در داخل حلال محلول هستند . علاوه بر این ویسکوزیته کمتر سبب بهبود اختلاط و کارایی شروع کننده می گردد. مهمترین نقطه ضعف این روش هزینه جداسازی حلال و بازیابی آن است .
ویسکوزیته سیستم پلیمریزاسیون تعلیقی در طول واکنش نسبتاً ثابت باقی مانده و عمدتاً به وسیله ویسکوزیته فاز مداوم(آب) تعیین می گردد. اغلب پلیمرها دارای دانسیته بیشتری نسبت به منومرهای خود هستند. به این جهت در پلیمریزاسیون تعلیقی سیستم اختلاط باید به گونه ای انتخاب گردد که در ابتدا منومرهای از سطح به زیر کشیده شده و در داخل فاز آبی پراکنده شوند و در انتها از ته نشینی ذرات جامد پلیمری جلوگیری به عمل آورده و آنها را به طور یکنواخت در داخل فاز پیوسته پراکنده سازد. فاز پیوسته به عنوان عامل انتقال حرارت عمل نموده و در نتیجه کنترل درجه حرارت در این فرایند ساده تر از نوع جرمی است. چسبندگی و رسوب پلیمر نیز به مراتب کمتر از فرایند جرمی مشاهده می شود.
پلیمریزاسیون تعلیقی به عنوان مرحله دوم فرایند جرمی نیز قابلیت کاربرد دارد(مانند فرایند تولید پلی استیرن مقاوم). زیرا معمولاً ادامه پلیمریزاسیون تا رسیدن به درجه تبدیل نهایی توسط فرایند تعلیقی انجام می گیرد. پس از پایان پلیمریزاسیون، دانه های پلیمری از طریق سانتریفوژ جدا و خشک می گردند. اختلاط در پلیمریزاسیون امولسیونی نسبت به پلیمر یزاسیون تعلیقی از اهمیت کمتری برخوردار است و عمدتاً جهت تسهیل انتقال حرارت طراحی می شود . کاربرد زیاذ امولسیفایر در پلیمریزاسیون امولسیونی، جداسازی آن را در پایان واکنش دشوار می سازد . به همین سبب معمولاً از فرایندهای امولسیونی در جایی استفاده می شود که در شکل نهایی مصرف به صورت لاتکس یا امولسیون باشد(مانند امولسیون نهایی اکریلیک). در صورت لزوم استفاده از پلیمر خالص، محلول پلیمریزاسیون ابتدا منعقد و سپس دانه های پلیمر به کمک فیلتر جدا و خشک می گردد.
بررسی مشکلات فرایند پلیمریزاسیون:
مشکلات تولید صنعتی پلیمرها با تولید ترکیبات آلی با وزن ملکولی کم بسیار متفاوت است. در اینجا برخی از مهمترین ویژگی های واکنش های پلیمریزاسیون مورد بحث قرار می گیرند. افزایش ویسکوزیته یکی از مهمترین مشکلات واکنش های پلیمریزاسیون، افزایش شدید ویسکوزیته با پیشرفت واکنش است .در حقیقت بخش عمده مشکلات در مهندسی فرایند های پلیمریزاسیون بازتابی از افزایش ویسکوزیته است و علم نوبنیاد مهندسی واکنش های پلیمریزاسیون نیز چیزی جز چگونگی خنثی نمودن اثر افزایش ویسکوزیته در چارچوب مهندسی شیمی نیست. در پلیمریزاسیون زنجیری به محض شروع واکنش، پلیمرهای با وزن ملکولی بالا تولید می شود . تغییرات وزن ملکولی با درجه تبدیل نسبتاً کم است. از این رو افزایش ویسکوزیته به واسطه افزایش میزان پلیمر در مخلوط واکنش صورت می گیرد. در پلیمریزاسیون مرحله ای تنها الیگومرها تا درجات تبدیل بالا وجود دارند و تنها بعد از آن وزن مولکولی پلیمر به طور ناگهانی و به شدت افزایش می یابد . ویسکوزیته محلول در حال واکنش نیز تا مراحل پایانی واکنش نسبتاً کم است و سپس به طور ناگهانی افزایش می یابد. بنابراین عامل افزایش ویسکوزیته تا مراحل پایانی واکنش، میزان پلیمر در مخلوط واکنش است. در حالیکه در مراحل پایانی افزایش درجه پلیمریزاسیون یا به عبارت دیگر وزن ملکولی پلیمر سبب افزایش ویسکوزیته می شود که اثرات آن به مراتب شدیدتر است. افزایش ویسکوزیته در سیستم های همگن به مراتب شدیدتر از ناهمگن است . افزایش ویسکوزیته در پلیمریزاسیونهای جرمی و محلول تا۱۰۶برابر نیز تخمین زده می شود. در حالیکه در پلیمریزاسیون امولسیونی که به واسطه امولسیفایرهایی با وزن ملکولی کم تثبیت م یشود، ویسکوزیته به طور متوسط تا ۱۰۳ برابر افزایش نشان می دهد. افزایش ویسکوزیته در پلیمریزاسیون تعلیقی مشهود نیست و ویسکوزیته آن به وسیله فاز آب دیکته می شود.
از مهمترین اثرات افزایش ویسکوزیته کاهش ضریب نفوذ ملکولی و ضریب انتقال جرم است. کاهش ضریب نفوذ ملکولی باعث کاهش تحرک ماکرورادیکال های در حال واکنش شده و در نتیجه از وقوع واکنش پایان جلوگیری به عمل می آورد که این امر پدیده اثر ژل را به دنبال دارد . بروز اثر ژل باعث افزایش ناگهانی و شدید سرعت واکنش می گردد. به موازات افزایش سرعت واکنش،از یک طرف شدت آزادسازی حرارت آهنگ صعودی پیدا می کند و از طرف دیگر توان مکانیکی همزن افزایش می یابد .در نتیجه کاهش توان سرمایشی راکتور کاهش می یابد. این موضوع منجر به بروز مشکلاتی در کنترل و پایداری راکتور پلیمریزاسیون می گردد. در ناحیه ای که تولید ژل زیاد می شود، انرژی آزاد شده به اندازه ای است که حالت انفجاری به سیستم می دهد. در بسیاری از واحدهای صنعتی وقایع مصیبت باری به واسطه خارج شدن کنترل واکنش پلیمریزاسیون به دلیل عدم موفقیت در جذب حرارت آزاد شده گزارش شده است . به همین دلیل طراحی دقیق راکتور و سیستم کنترل آن در فرایندهای پلیمریزاسیون از اهمیت خاص برخوردار است. حرارت زایی بسیاری از واکنش های پلیمریزاسیون با پیشرفت واکنش مقدار قابل توجهی انرژی از خود آزاد می کنند . علاوه بر این، انرژی مکانیکی لازم برای اختلاط نیز در ویسکوزیته بالا تبدیل به انرژی گرمایی می شود . جذب انرژی آزاد شده در پلیمریزاسیونهای با درجه خلوص بالا به واسطه افزایش ویسکوزیته ، چسبندگی پلیمر به سطوح انتقال حرارت و تغییرات فاز در طی واکنش، از مهمترین دشواری های مهندسی واکنش های پلیمریزاسیون است. طراحی راکتور واکنشهای پلیمریزاسیون به میزان قابل توجهی انرژی آزاد می کنند. در واکنشهای مواد با وزن مولکولی کم بالاترین شدت حرارت در ابتدای واکنش که در آن غلظت مواد واکنش کننده حداکثر است رخ می دهد . در حالیکه در واکنشهای پلیمریزاسیون به ویژه نوع جرمی آن به علت وقو ع اثر ژل و افرایش ناگهانی سرعت واکنش نقطه اوج آزادسازی حرارت در اواسط واکنش رخ می دهد . متوسط مقدار حرارت آزاد شده و همچنین حداکثر مقدار آن همسو با درجه حرارت و مقدار شروع کننده تغییر میکند . مقادیرحرارت و به ویژه حرارت ماکزیمم در پلیمریزاسیون متیل متاکریلات به مراتب بیشتر از پلیمریزاسیون استیرن است. این اختلاف ریشه در وجوذ اثرژل قوی در پلیمریزاسیون متیل متاکریلات نسبت به استیرن دارد. در مورد متیل متاکریلات اثر ژل در اوایل واکنش رخ میدهد. از این رو حرارت آزاد شده دارای یک نقطه اوج کاملاً متمایز است. در حالیکه اثر ژل در مورداستیرن در اواسط واکنش به وقوع میپیوندد یعنی در جایی که سرعت واکنش پلیمریزاسیون به واسطه مصرف مونومر و شروع کننده بسیار کم شده است. بنابراین ممکن است که حتی اثر ژل نیز قادر به افزایش سرعت واکنش تا مرز مقادیر اولیه آن نباشد.

نظرات ()


پیشنهادهای ما برای بازدید

  1. احمد

    سلام مهندس....به صورت pdfباشه ممنون میشیم.

  2. حسین

    اگه امکان داره مطالبو بصورت pdf قرار بده
    ممنون از سایت خوبتون

    پاسخ : حسین و وحید با یه آی پی
    چشم حسن آقا

نظرات

نام
ایمیل (منتشر نمی‌شود) (لازم)
وبسایت
:) :( ;) :D ;)) :X :? :P :* =(( :O @};- :B /:) :S
نظر خصوصی
مشخصات شما ذخیره شود ؟ [حذف مشخصات] [شکلک ها]
کد امنیتیرفرش کد امنیتی

خرید شارژ از درگاه اصلی وبلاگ عاشقان مهندسی شیمی

برای خرید شارژ آنلاین ، سریع و مطمئن از وبلاگ

"عــــاشقــــان مهنـدســــی شیمــی پــیــام نــور تــبـریـز"

بر روی بنر زیر کلیک کنید و به درگاه اصلی وب،وصل شوید!


بنر فروش شارژ - شارژ مستقیم همراه اول - ایرانسل



بنر فروش شارژ - شارژ مستقیم همراه اول - ایرانسل


بالا